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A periodic contact problem of the cylindrical bending of a plate by rigid stamps 
is considered from the aspect of equations of elasticity theory aswell as Kirch- 

hoff-Love theory with and without transverse compression of the material in the 

contact zone taken into account Analysis of the solutions obtained permits illu- 
mination of the question of the error and of the possibility of using the classical 

theory of plates and shells in analyzing contact problems, A comparative ana- 
lysis is given of the nature of the distribution and of the magnitude of the stresses 

of the plate in the contact zone, of the character of the contact reaction distri- 
bution and the dependence between the magnitude of the contact zone and the 
force applied to the stamp. The apparatus of integral equations is used in con- 
sidering the problem from the aspect of elasticity theory, while the solution is 

obtained in closed form by means of Kirchhoff theory. 

An analogous problem on the basis of the elasticity theory equations has been 

solved in [l] also by a method different from that elucidated below. However, 
only sufficiently thick plates (the ratio between the thickness and the character- 

istic dimension is not less than r/,,) are considered there, But a comparison bet- 
ween the stresses obtained when using different theories can yield the most cor- 
rect answer about the applicability of any theory. 

1. Solution on the baria of elraticity theory equations. Let us 
consider an infinite plate of thickness h (Fig. 1) occupying the zz plane and loaded by 
a system of rigid stamps. The stamps are identical and arranged with a constant spacing 
21, have a cylindrical base surface so that the contact occurs over the whole length along 
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the z -axis and the plate is under plane strain con- 
ditions. 

Let us first write the solution for a self-balanced 
system of normal concentrated forces P, applied 

at the points x = 0, + 21, + 41, . . , ” - - Using 

the general solution [Z] and the boundary conditions 
for the stresses 

Fig. 1 

we obtain 

Here 

5x = $- jj P&n(t) + (-l)m&n (t)] cosmrp (1. 2) 
m=l 

%=-~{++.i~ f91m (f) + (-l)“$m (t)l CC@ mqt 
I 

t= 
mn v 
21’ 

q;,* = q.?$ 

$‘im (t) = Ujm ch t + b+ sh t + ~jmt ch t + djmt sh t 

%rn= 17 a3m = 0, c~~=(sh~ch~+~)u~ 

CWI = - (T ch 7 + sh T) uZ, d,m = - sh2 r&y ds, = y sh r a;: 

blrn=-c~rnv b3m=-c3m, a,=sh2~--P, r=mnh/21 

We find the deflection w of the plate surface y = 0 in the y direction by integration 
of the Hooke’s law relationship for plane strain 

f3W -& (av - vla,), El = --!?- 9 

v 
-= 
ay 1 -v2 Vl = l--y 

Taking account of (1. 2), we obtain after extracting the divergent part of the series 

(al is an arbitrary constant of integration) 

bm = 4 [cl,* - 1 + (-- 4)” csml 

The expression (1.3) is used as a Green’s function for the deflection of the plate con 
tact zone due to reaction. On the other hand, if the curvature of the stamp base is x = 
1 / fi = coast, then the deflection of the plate contact zone in the case of a close 

fit will be (d is the unknown deflection of the stamp) 

w=d - 212q I (3PR) 

Equalizing the designated deflections results in an integral equation to determine the 
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normal reaction q of the stamp 

e 

s I 
q1 In 2 sin F ) dv, = \ qlK ((p - cpl) dipI + r.p2 + 6 (1.4) 

Z6<9<6) 

-fl 

Here 28 is the magnitude of the contact zone and 6 is an arbitrary constant char- 
acterizing the deflection of the stamp. 

Let us convert (1.4) to a Fredholm equation of the second kind by inverting the integ- 

ral in the left side [3]. 
Denoting the right side of (1. 4) by f (cp) for brevity, we obtain 

e 
1 

Q1 (%J = WX((p0) _-B 5 
X(cp) f’ (cp) dq ; A CO~~/~CPO , 
sin l/e (9 - qo) z x (9) 

(1. 5) 

x (cp) = 1/2 (cos cp - cos (3) 

Here A is a constant determined from the condition 

Is f (cp) AInsin+=+ \ -cos +dcp 
_e x (9) (1. 6) 

Since the function f (cp) depends on the arbitrary constant 6, then according to (1. 6) 

the constant A can be considered arbitrary and condition (1.6) itself is not taken into 

account, since it is satisfied for any A by the selection of 6. 
Let us select the constant A so that the reaction q1 would be bounded at the ends of 

the contact zone. To do this, let us find the condition for the right side of (1. 5) to va- 

nish for cp = + 8 . Using the identities 

co9 ‘PO - coscp= 2sin~Sin* 

we rewrite (1. 5) as 
e 

x ((0) 

e 
1 s 4 sin l/s (cp + cpo) f’ (vv) W 

2Jcx (WI _e x (cp) 

The requirement that the sum of the last two members vanish yields the two condi- 

The second condition can be considered satisfied ; it is the formula to determine A 
while the first is satisfied automatically because of the evenness of the function f (9). 
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The evenness follows from an elementary analysis of (1.4). 
Thus e 

4lGPO) = +g- \ x,,,&y/~~;_qo) 

-% 
(1.7) 

It can be established from (1.4) that the function q1 is even, hence, its even part K (0, 
&) can henceforth be taken in place of the kernel K (cp - (pi) . Inserting the function 

f (cp) in (1. 7) after this (let us recall that f ((pi is the right side of (l-4)), evaluating 

the appropriate integrals and in~~ucing the new unknown function g (9) by means of 
the relationship 

e(v) = X~rp)cos $Y@) (1.8) 

we obtain the following Fredholm integral equation of the second kind for y (rp): 

Here (P, = P, (cos 0) are Legendre polynomials, b, are coefficients defined in 

(1.3)) e 

R (rpil cp,) = & \ dKp; m1) dq 
X (q) sin ‘12 (q - 90) 

= (1. 10) 

-% 
m 

b(b)= + i cpd? 
X ffp) sin l/z (9, - cpo) ’ 

-8 
(1. II) 

k-l 

ok(cpo)= 2 Pncos n--k++- qpoy k=l,Z,... 
n=o 

The numerical solution of (1. 9) is given below. By knowing it we can determine the 
normal stresses o;, in a plate, which are of greatest interest in estimating the errors in- 

duced in the solution of the problem by the Kirchhoff-Love hypothes.. Using the solu- 

tion (1. 2) for the stress oI: due to concentrated forces, we obtain the stress due to the 

reaction q taking account of the second formula in (1.4), as 

q1 ~0s m (cp - cpd d ‘PD fm(t) = 4;m (r) 4 (la 12) 

The stamp equilibrium condition yields an equation connecting the magnitude of the 
contact zone 0 and the force P applied to the stamp 

(1. 13) 

If the Kirchhoff-Love hypotheses are considered valid for the plate examined above 
(Fig. 1) which is loaded by a system of stamps, then it can be identified with a plate 
occupying the domain - 1 < z < 1 and simply supported along the edges x := 2_ 6. 
When a cylindrical stamp with base curvature x = 1 / R = con& acts on the plate, 
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the maximum stresses in the contact zone will be constant over the length of the zone 

and equal to a, = Erh I (ZR) (1. 14) 

It is convenient to compare the stresses (1. 12), evaluated on the basis of elasticity the- 
ory, with the stresses (1.14) and to analyze the dimensionless stress parameter 

o - 0;: / a, (1. 15) 

whose deflection from one in the contact zone will characterize the error induced in the 
solution of the Kirchhoff-Love theory. 

Within the framework of the Kirchhoff-Love theory, the dimensionless parameter P* 

of the force P applied to the stamp is related to the parameter b of the magnitude of 

the contact zone (2b is the actual width of the contact zone) by the condition 

Here 
P* = 1 i (i - 6) (1.16) 

Comparing the parameters P* obtained by using (1. 13) and (1. IS), we can obtain an 
integral characteristic of the error induced by the Kirchhoff-Love theory. 

Let us briefly examine the algorithm for numerical solution of the problem, Equation 

(1. 9) has been solved by reducing it to a system of elgebraic equations by using the quad- 
rature formula s (1.17) 

?E- f(a)da s 
_ = f i fO 7 C$ = - 2arcsin(sjn$eos?!L$n), 

.k (a) k=l 
cos ‘/zak 

which is obtaine-d’from the Meller quadarture formula ~41 by a simple change of variable 
and is exact for a polynomial of degree up to 2n - 1. Formula (1‘ 17) has also been 

used to evaluate the integrals (1. 12), (1. 13) and (1. 11). The last integral is first regu- 
larized by using the identity a 

s 
dg, 

--R 
X (cp) sin VZ ((p - cpo) z 0 

2. Solution by meal of Kfrchhoff theory taking account of 
trrnsverts comprertfon of the plate, The numerical computations presen- 

ted here permit making a deduction about the possibility of using Kirchhoff theory for 

sufficiently thin plates, However, the Kirchhoff theory contains some formal contradic- 
tions. Thus, concentrated forces at the ends of the contact zone appear in the composi- 

tion of the reaction as a result of a jump in the transverse force, The dependence bet- 

ween the force applied to the stamp and the magnitude of the contact zone is isolated 
in the initial contactstage, since the contact zone does not appear at once but only as 

the force grows to some value. 

The formal contradictions can be eliminated within the framework of approximate 

theories either by taking account of the transverse shear strain [5] or by transverse com- 

pression of the plate, or of the two t0gether.A solution taking account of transverse compres- 
sion is presented below, but without taking account of transverse shears When taking 
account of transverse shear,this solution eliminates the concentrated forces at the ends of 
the contact zone and the discrepancy noted between the applied force and the magni- 
tude of the contact zone in the initial stage. Moreover, the character of the change in 
the reaction along the length of the contact zone for medium and small nones is close 
to the true value while taking account of just the transverse shear strain yields a reaction 
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which has a maximum value at the ends of the contact zone, where it should really be 
zero. 

We find the magnitude of the transverse compression by applying a known, but formally 
invalid within the framework of the Kirchhoff theory, method of integrating the Hooke’s 

law relationship for the transverse strain ey after having found the stress uv from the equi- 

librium equation, If the difference between the deflection w (0) of the contact surface 
and the deflection of the plate middle surface is understood to be transverse compression, 

we find 13 h 
,w(O) = w+x-pl + 8(;h:y) gc (2. 1) 

where q is the reaction from the stamp on the plate in the y”direction (Fig. 1). The last 
member in (2. 1) is discarded for simplicity, since it does not spoil the qualitative pic- 

ture of the solution and, as computations taking this member into account have shown, 
does not alter the solution quantitatively, in practice. 

If the curvature of the stamp base is x = 1 / R = coast as above, then the condi- 
tion for the stamp and plate to fit closely in the contact zone will be (d is the stamp 

deflection) 

Wi- J.CLq=d_J$- (2. 2) 

Condition (2.2) can be considered as a formula to determine the deflection w if the 

reaction is known. We obtain the equation for the reaction if we substitute the deflection 

from (2. 2) into the plate equilibrium equation in the contact zone 

d4wld;t4 = q/ D 

We consequently obtain the equation 

~+46+0, &=+, m=+ 
V 

4 +Y+ (1 -Y”) (2. 3) 

In contrast to the solution for the reaction q obtained when thing into account just 
the transverse shear, and determined from a second order equation, the solution of (2. 3) 
can be subjected not only to stamp equilibrium conditions but also the condition of va- 
nishing reaction at the ends of the contact zone. In the case under consideration of a 

symmetrical stamp, this solution (B == 011 is tile dimensionless value of the con- 

tact zone) 
f (E) 

q = ? shop-sin@ 
(2.4) 

j (E) = sh o (8 + 8 sin 0 (p - E) + sh KI (j3 - E) sin W (B + Q 

It follows from (2.4) that the form of the solution is independent of the plate support 
conditions ; these conditions will only influence the dependence between the force P 
and the magnitude of the contact zone fl. 

Let us note that there are two arbitrary quantities in the expression for the deflection 
in the contact zone, which is deeermined from (2. 2) in terms of the reaction (2. 4), name- 
ly, the stamp deflection d and the magnitude of the contact zone fi. The general solu- 
tion for the deflection outside the contact zone will contain four arbitrary quantities. 
These six arbitrary quantities permit compliance with four juncture conditions at the end 
of the contact zone and two boundary conditions at the end of the plate IC = 1. 

We therefore obtain a relationship between the force P pressing the stamp and the 
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magnitude of the contact zone /3 as well as between the deflection d and /3. In the 

case of simply supported plate edges, we have (P* is the external loading parameter 
exactly as in (1. 16)) 

p*= I 
(i-p)u, ’ a*=1 - $1 -P)” + 

a* _ 2dR 
-77 Q-l+ I cl1 2op + co9 2op 

0 (1 - S) sh 2ofi - sin 2~3 

91=1+ 3 
ch 203 + cos 2,S 

+ 3 
sh 2@ + sin 2oS 

o (1 -S) sh 208 - sin 203 UP (1 - 3)% sh 20/j - sin 2op * 

8. Let us estimate the accuracy of the numerical solution in sect, 1 and the results. 

The accuracy depends on the number of terms kept in the series (1. lo), determining the 

kernel of (1. 9), and the number n in the quadrature sum of type (1.17). It has been es- 
tablished by variation of these quantities that the error in the reaction does not exceed 

two percent if the number of terms in the series (1.10) is taken equal to the magnitude 
of the parameter 21/ h. The error in the stresses will hence be still smaller. As regards 

the number n in the sum (1. 17), it is sufficient to take n = 20. The results for n = 20 
and 40 agree even in the case of a thin plate (21 / h = 100). For 2Z/ h < 100 the 
reaction will be a smoother function and the accuracy will grow. 

2 l/h 

I 

100 

P I)“;0 Y(0 Is I 

0.03 0.819 0.720 1.017 1.018 1.031 
0.06 0,970 0.981 1.049 1.050 1.064 

::: 
1.032 1.045 1.095 1.096 :.111 
1.303 1.313 1.402 1.404 i .429 

::: 
2.140 2.166 2.417 2.425 2.509 
3.740 3.821 4.701 4.709 5.009 

The change in the load parameter P * is shown in the table as a function of the mag- 

nitude of the contact zone /3 = b / 1. The columns y hence correspond to the solution 

in Sect. 1, the columns 0 to the solution in Sect. 2, and k to the solution using Kirchhoff- 
Love theory without taking account of transverse compression. 

It is seen that a discrepancy between the Kirchhoff and elasticity theories occurs only 
for very small and very large contact zones. Taking account of transverse compression 
improves the result. 

shown in Fig. 2 is the character of the measurement of the dimensionless reaction 

q* = 2qZg i P along the length of the contact zone (E = I / b, Fig 1) for the following 
values of 2 1 I h and 6 : 1 - 21 I h = 20, 6 = O,l, 2 - 21 I h = 20, fi = 0.3, 3 - 

21 / h = 100, b = 0.1, 4 - 21 / h = 100, B = 0.3. The solid lines correspond to the 

solution in Sect 1, and the dashes to the solution by the formulas in Sect,2. As we see, 

concentration of the reaction at the end of the contact zone occurs as the plate thickness 
diminishes. The approximate solution taking into account transverse compression agrees 
sufficiently well with that obtained by elasticity theory. Shown for comparison in Fig, 2 
is the solution from the theory of plates with transverse shear but not transverse compres- 
sion taken into account, This is the solid monotonically increasing curve which corre- 

sponds to 21 ! h = 20, p = 0.3. 
A numerical computation of the stress parameter (1. 15) shows that it differs most 
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strongly from one at the ends of the contact zone. Graphs of its change at the ends of 
the contact zone are given in Fig. 3 as a function of the magnitude of the zone and the 

thickness of the plate. 
Shown by dashes is the 

the change in reaction 

Fig. 2 Fig, 3 

The values of 211 la = 20, 60, 100 correspond to curves 1-3 . 
solution by Kirchhoff theory, but taking account of the nature of 

in the contact zone, obtained from (2.4). As we see, the true 

stresses in the contact zone differ insignificantly for thin plates from those obtained by 
Kirchhoff theory. 
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The problem of the vibrations of a rigid circular stamp on the surface of an ela- 

stic layer at rest on a rigid base is examined, There is no friction between the 

stamp and the layer, and between the layer and the base. The contact stresses 


